
GPU Coder™ Release Notes



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

GPU Coder™ Release Notes
© COPYRIGHT 2017–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


R2021a
 

Code Optimization: Control the number of blocks created during kernel
launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Generate code from MATLAB for dlnetwork workflows that uses deep
learning arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Generate code that uses newer versions of NVIDIA cuDNN and TensorRT
libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Deep Learning Layers: Generate code for additional layers . . . . . . . . . . . 1-3

Code generation for additional Computer Vision Toolbox functions . . . . . 1-3

Code generation for additional Wavelet Toolbox functions . . . . . . . . . . . . 1-3

Code generation for additional MATLAB functions . . . . . . . . . . . . . . . . . . 1-3

GPU Coder Support Package for NVIDIA GPUs is moved to MATLAB
Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE
Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Functionality being removed or changed . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
cnncodegen Function: ARM Mali target support only . . . . . . . . . . . . . . . . 1-4
Deprecating support for unified memory allocation mode on host . . . . . . . 1-4

R2020b
 

Simulink Support: Generate, build, and deploy Simulink models to
NVIDIA GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Deep Learning Simulink Support: Generate, build, and deploy deep
learning networks in Simulink models to NVIDIA GPUs . . . . . . . . . . . . 2-2

Simulink Support: SIL, PIL, and external mode simulations . . . . . . . . . . . 2-2

Persistent Variables: Create persistent memory on the GPU . . . . . . . . . . . 2-3

Wavelet Toolbox Code Generation: Generate code for FFT-based FIR
filtering and Short-time Fourier transform functions . . . . . . . . . . . . . . 2-3

iii

Contents



Deep Learning: Generate code for custom layers . . . . . . . . . . . . . . . . . . . . 2-4

Multi-Input Networks: Generate code for networks that have multiple
inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Convolutional Recurrent Neural Networks: Generate code for
convolutional LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Long Short-Term Memory (LSTM) Networks: Generate code for network
activations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Workflow improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

cuFFT Library Support: Improved performance of generated code for fast
Fourier transform (FFT) functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Deep Learning Networks: Generate code for additional networks . . . . . . 2-5

Deep Learning Layers: Generate code for additional layers . . . . . . . . . . . 2-5

Code generation for additional Computer Vision Toolbox function . . . . . 2-6

Code generation for additional Signal Processing Toolbox functions . . . . 2-6

New examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

Functionality being removed or changed . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
cnncodegen Function: ARM Mali targets support only . . . . . . . . . . . . . . . 2-7

R2020a
 

cuBLAS Support: Generate CUDA code for strided and batched matrix
multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Single Shot Object Detection (SSD) Networks: Object detection on
NVIDIA GPU by using a single shot multibox detector . . . . . . . . . . . . . 3-2

Row-Major Array Layout: Simplify interfacing generated deep learning
code with target libraries by storing arrays in row-major layout . . . . . 3-2

Long Short-Term Memory (LSTM) Networks: Generate code for
bidirectional and stateful LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Multi-Output Networks: Generate code for networks with multiple
outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Deep Learning Networks: Generate code for more networks . . . . . . . . . . 3-3

Generate code for half-precision floating point data type . . . . . . . . . . . . . 3-3

iv Contents



Deep Learning Layers: Generate code for more layers . . . . . . . . . . . . . . . . 3-3

Code generation for more MATLAB functions . . . . . . . . . . . . . . . . . . . . . . 3-4

Code generation for more Image Processing Toolbox functions . . . . . . . . 3-4

Code generation for more Computer Vision Toolbox functions . . . . . . . . . 3-5

Code generation for more Signal Processing Toolbox functions . . . . . . . . 3-5

Code generation for Audio Toolbox functions . . . . . . . . . . . . . . . . . . . . . . . 3-5

Deep Learning: Generate code that uses newer versions of ARM Compute
library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

New and updated examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

Functionality being removed or changed . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

R2019b
 

Long Short-Term Memory (LSTM) Networks: Generate code for recurrent
networks such as LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Deep Learning Targeting: Deploy deep learning networks to ARM Mali
GPU processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

TensorRT Support: Support for NVIDIA TensorRT library on the Windows
platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Deep Learning Networks: Generate code for more networks . . . . . . . . . . 4-2

Deep Learning Layers: Generate code for more layers . . . . . . . . . . . . . . . . 4-2

1-D reduction operations on the GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Workflow and generated code improvements . . . . . . . . . . . . . . . . . . . . . . . 4-4

Code generation for more Image Processing Toolbox functions . . . . . . . . 4-4

Code generation for more MATLAB functions . . . . . . . . . . . . . . . . . . . . . . 4-4

Code generation for more Computer Vision Toolbox functions . . . . . . . . . 4-4

Functionality being removed or changed . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

New examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

v



R2019a
 

Deep Learning: Generate code for more layers . . . . . . . . . . . . . . . . . . . . . . 5-2

TensorRT Support: Generate code that takes advantage of FP16
optimization in deep learning inference applications . . . . . . . . . . . . . . 5-2

Deep Learning: Generate code for more networks . . . . . . . . . . . . . . . . . . . 5-3

CUDA optimized transpose function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Support for unbounded variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Workflow and generated code quality improvements . . . . . . . . . . . . . . . . . 5-3

Code generation for more MATLAB functions . . . . . . . . . . . . . . . . . . . . . . 5-3

Code generation for more Image Processing Toolbox functions . . . . . . . . 5-4

Code generation for more Computer Vision Toolbox functions . . . . . . . . . 5-4

Code generation for Statistics and Machine Learning Toolbox functions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

Code generation for Wavelet Toolbox function . . . . . . . . . . . . . . . . . . . . . . 5-4

New examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

R2018b
 

Deep Learning Retargetability: Deploy applications that use deep
learning networks onto Intel MKL-DNN, and NVIDIA TensorRT by using
the codegen function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

Thrust Library Support: Generate GPU-accelerated code for sort and
reduction operations by using the Thrust library . . . . . . . . . . . . . . . . . . 6-2

Deep Learning Optimization: Improve performance and memory
utilization through auto-tuning, layer fusion, and buffer minimization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

gpuArray Support: Use gpuArray arguments at the I/O of MEX targets
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

Support Package for NVIDIA GPUs: Target NVIDIA Jetson and DRIVE
platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

vi Contents



Calling External CUDA Functions: Use GPU arguments that pass by
reference when using coder.ceval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

Deep Learning Layers: Generate code for new network layers . . . . . . . . . 6-3

Ease-of-use and traceability improvements . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

Code generation for more Image Processing Toolbox functions . . . . . . . . 6-4

Deep learning examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

Functionality being removed or changed . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

R2018a
 

Directed Acyclic Graph (DAG) Networks: Generate CUDA code for deep
learning networks with DAG topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

Deep Learning Layers: Generate CUDA code for popular networks such as
GoogLeNet, ResNet, and SegNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

TensorRT Support: Generate code that takes advantage of NVIDIA deep
learning inference optimizer and run time . . . . . . . . . . . . . . . . . . . . . . . 7-2

Multi-Platform Deep Learning Targeting: Deploy deep learning networks
to Intel and ARM processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

Code generation for Image Processing Toolbox functions . . . . . . . . . . . . . 7-2

Code generation for Computer Vision System Toolbox functions . . . . . . . 7-2

Loop and kernel optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

Deep learning examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

R2017b
 

CUDA C and C++ code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

Deep Learning Network Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

Image Processing Toolbox Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

CUDA Kernel and memory Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

MEX Function Generation for code Verification and Acceleration . . . . . . 8-2

vii



Legacy CUDA code Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

Hardware Integration with NVIDIA Tegra . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

Code Profiling and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

viii Contents



R2021a

Version: 2.1

New Features

Bug Fixes

Compatibility Considerations

1



Code Optimization: Control the number of blocks created during
kernel launch
In R2021a, you can specify the maximum number of blocks created during a kernel launch. Because
GPU devices have limited streaming multiprocessor (SM) resources, limiting the number of blocks for
each kernel can avoid performance losses from scheduling, loading and unloading of blocks. To
specify the maximum number of blocks for each kernel, use one of these methods:

• In a GPU code configuration object (coder.GpuCodeConfig), set a valid value for the
MaximumBlocksPerKernel property.

• In the GPU Coder™ app, on the GPU Code tab, set a valid value for Maximum Blocks Per
Kernel.

• In the Simulink® Configuration Parameters dialog box, Code Generation > GPU Code pane, set
a valid value for the Maximum blocks per kernel parameter.

If the number of iterations in a loop is greater than the maximum number of blocks per kernel, the
code generator creates CUDA® kernels with striding.

When you specify the maximum number of blocks for each kernel, the code generator creates 1-D
kernels. To force the code generator to create 2-D or 3-D kernels, use the coder.gpu.kernel
pragma. The coder.gpu.kernel pragma takes precedence over the maximum number of kernels
for each block.

Generate code from MATLAB for dlnetwork workflows that uses deep
learning arrays
In R2021a, you can generate code for dlnetwork and dlarray that you use to run inference with
dlnetwork. Code generation support includes:

• Construction of formatted and unformatted dlarray
• Passing dlarray to entry-point functions and returning dlarray from entry-point functions
• Invoking a subset of functions on dlarray objects, including the object functions softmax,

sigmoid, and fullyconnect
• Passing formatted dlarray to the dlnetwork predict function inside an entry-point function.

See:

• Help topic: “Code Generation for dlarray”
• Example: “Generate Digit Images on NVIDIA GPU Using Variational Autoencoder”

Generate code that uses newer versions of NVIDIA cuDNN and
TensorRT libraries
In R2021a, you can generate CUDA code for layers and networks that uses these newer versions of
NVIDIA® CUDA deep neural network library (cuDNN) and TensorRT high performance inference
library for NVIDIA GPUs.

• NVIDIA CUDA deep neural network library (cuDNN), version 8.1.0.
• NVIDIA TensorRT high performance inference library, version 7.2.x.

R2021a
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See “Installing Prerequisite Products”.

Compatibility Considerations
When performing inference in INT8 (8-bit integer) precision using cuDNN version 8.1.0, issues in the
NVIDIA library may cause significant degradation in performance.

Deep Learning Layers: Generate code for additional layers
Code generation by using the CUDA Deep Neural Network library (cuDNN) supports this additional
layer:

• featureInputLayer inputs feature data to a network and applies data normalization.

Code generation by using the cuDNN library with inference computation in 8-bit integer precision
supports this additional layer:

• maxPooling2dLayer performs down-sampling by dividing the input into rectangular pooling
regions and computing the maximum of each region.

Code generation by using the NVIDIA TensorRT Library supports this additional layer:

• featureInputLayer inputs feature data to a network and applies data normalization.

Code generation for ARM® Mali GPUs using the ARM Compute Library supports this additional layer:

• featureInputLayer inputs feature data to a network and applies data normalization.

For more information, see Supported Networks and Layers.

Code generation for additional Computer Vision Toolbox functions
In R2021a, you can generate optimized CUDA code for these additional Computer Vision Toolbox™
toolbox functions:

• pcregisterndt
• pcdownsample
• pcbin
• segmentGroundFromLidarData

Code generation for additional Wavelet Toolbox functions
In R2021a, you can generate optimized CUDA code for these additional Wavelet Toolbox™ toolbox
functions:

• Discrete Wavelet Transforms — waverec and waverec2
• Denoising — wdenoise and wdenoise2

Code generation for additional MATLAB functions
In R2021a, you can generate optimized CUDA code for these additional MATLAB® toolbox functions:
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• histcounts
• interp1

GPU Coder Support Package for NVIDIA GPUs is moved to MATLAB
Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms
Starting in R2021a, the GPU Coder Support Package for NVIDIA GPUs is named MATLAB Coder™
Support Package for NVIDIA Jetson® and NVIDIA DRIVE Platforms. To use this support package in
R2021a, you must have the MATLAB Coder product. For more information, see “GPU Coder
Supported Hardware”.

Functionality being removed or changed
cnncodegen Function: ARM Mali target support only
Warns

In a future release, the cnncodegen function will generate C++ code and build a static library for
only the ARM Mali GPU processor. You can continue to use the 'arm-compute-mali' value for the
'targetlib' argument to target an ARM Mali GPU by using the ARM Compute Library for
computer vision and machine learning.

For all other targets, use the codegen command. To learn about targeting cuDNN targets by using
the codegen function, see “Code Generation for Deep Learning Networks by Using cuDNN”. To learn
about targeting TensorRT targets by using the codegen function, see “Code Generation for Deep
Learning Networks by Using TensorRT”.

Deprecating support for unified memory allocation mode on host
Behavior change in future release

In a future release, support for the unified memory allocation (cudaMallocManaged) mode will be
removed when targeting NVIDIA GPU devices on the host development computer. You can continue to
use unified memory allocation mode when targeting NVIDIA embedded platforms.

When generating CUDA code from MATLAB, set the MallocMode property of the coder.gpuConfig
code configuration object to 'discrete'.

When generating CUDA code from Simulink models, select 'discrete' for the Memory mode
parameter in the Code Generation>GPU Code pane.

R2021a
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Simulink Support: Generate, build, and deploy Simulink models to
NVIDIA GPUs
In R2020b, you can use GPU Coder to generate and execute optimized CUDA C++ code from
Simulink models that contain MATLAB Function blocks. The generated code calls optimized NVIDIA
CUDA libraries, including cuFFT, cuSolver, and cuBLAS.

You can use the generated CUDA code within Simulink to:

• Speed up the execution of your Simulink model by using NVIDIA GPUs. When you simulate a
model that contains a MATLAB Function block, the software generates CUDA MATLAB executable
(MEX) code from the block and dynamically links the generated code to Simulink. For more
information, see Simulation Acceleration by Using GPU Coder.

• Build an executable that you can use for rapid prototyping on NVIDIA GPUs. For more
information, see Code Generation from Simulink Models by Using GPU Coder.

• Deploy the Simulink models on embedded NVIDIA GPUs such as Jetson and DRIVE by using the
GPU Coder Support Package for NVIDIA GPUs. You can also remotely communicate with the
NVIDIA target and control the peripheral devices for prototyping. For more information, see
Targeting NVIDIA Embedded Boards.

Deep Learning Simulink Support: Generate, build, and deploy deep
learning networks in Simulink models to NVIDIA GPUs
In this release, you can use GPU Coder to generate and execute optimized CUDA C++ code for deep
learning networks in Simulink models. The generated code calls optimized NVIDIA CUDA libraries,
including cuDNN and TensorRT.

You can use the generated CUDA code within Simulink to:

• Speed up the execution of your Simulink model by using NVIDIA GPUs. When you simulate a
model that contains a MATLAB Function or Deep Learning Toolbox™ blocks, the software
generates CUDA MATLAB executable (MEX) code from the block and dynamically links the
generated code to Simulink.

• Build an executable that you can use for rapid prototyping on NVIDIA GPUs.

For more information, see Deep Learning in Simulink Using Deep Neural Networks Library and Deep
Learning in Simulink Using MATLAB Function Block. You can also deploy the Simulink models on
embedded NVIDIA GPUs such as Jetson and DRIVE by using the GPU Coder Support Package for
NVIDIA GPUs. For more information, see Targeting NVIDIA Embedded Boards.

Simulink Support: SIL, PIL, and external mode simulations
Test numerical equivalence between model components and production code that you generate from
the components by using software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations. With
a SIL simulation, you test the behavior of generated source code on development computer.
Simulation does not test code compiled for target hardware because code is compiled for the
development computer. With a PIL simulation, you test the compiled object code that you intend to
deploy on a target hardware by running the object code on real target hardware.

R2020b
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To determine whether model components and generated code are numerically equivalent, compare
GPU acceleration and PIL results against normal mode results. For more information, see Numerical
Equivalence Testing

Use external mode simulations for rapid prototyping. With external mode simulation, you can:

• Modify or tune block parameters in real time. When you change parameters in your model,
Simulink downloads the new values to the executing target application.

• Monitor and save signal data from the executing target application.

For more information, see Parameter Tuning and Signal Monitoring Using External Mode.

Persistent Variables: Create persistent memory on the GPU
In this release, you can use the coder.gpu.persistentMemory pragma to allocate a variable as
persistent memory on the GPU. The variable must be fixed size and of a data type supported for GPU
code generation.

For example, when generating CUDA code for the entry-point function foo, the persistent variable p
is mapped to the GPU as variable with persistent memory.

function output = foo(input)
coder.gpu.kernelfun();
persistent p;
if isempty(p)
   p = zeros(1024,1);
end

coder.gpu.persistentMemory(p);
p = p + 1;
output = input + p;
end

Wavelet Toolbox Code Generation: Generate code for FFT-based FIR
filtering and Short-time Fourier transform functions
In R2020b, you can generate optimized CUDA code for the following additional Wavelet Toolbox
toolbox functions.

• modwt
• imodwt
• modwtmra
• dwt
• idwt
• dwt2
• idwt2
• wavedec
• wavedec2
• mdwtdec
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Deep Learning: Generate code for custom layers
In R2020b, you can generate CUDA code for deep learning networks that have custom deep learning
layers. Custom layer code generation supports NVIDIA CUDA deep neural network library (cuDNN)
and the NVIDIA TensorRT high performance inference library for NVIDIA GPUs. When targeting the
cuDNN library, the code generator supports both row-major and column-major code generation for
custom layers. For other usage notes and limitations, see Custom Layers.

To learn how to define custom deep learning layers, see Define Custom Deep Learning Layers (Deep
Learning Toolbox) and Define Custom Deep Learning Layer for Code Generation (Deep Learning
Toolbox). For an example on how to generate code for a network with custom layers, see Code
Generation For Object Detection Using YOLO v3 Deep Learning.

Multi-Input Networks: Generate code for networks that have multiple
inputs
In R2020b, you can generate code for networks that have multiple input layers. For information on
training multiple input networks, see Multiple-Input and Multiple-Output Networks (Deep Learning
Toolbox).

Convolutional Recurrent Neural Networks: Generate code for
convolutional LSTM
In this release, you can generate CUDA code for convolutional LSTM networks. Convolutional LSTM
is a type of LSTM network that is made up of convolutional and LSTM layers. Such a network is
useful for image and video classification applications where you use convolutional layers to extract
features from each frame independently. For more information, see Long Short-Term Memory
Networks (Deep Learning Toolbox).

Long Short-Term Memory (LSTM) Networks: Generate code for
network activations
You can generate code for the activations method and compute the network activations for a
specific layer of an LSTM network. For example, the following line of code returns the network
activations for the sequence or time series data you specify in sequences and the layer you specify
in layerIdx.

out = activations(mynet,sequences,layerIdx,'OutputAs','Channels');

Workflow improvements
In R2020b, when generating CUDA MEX with GPU Coder, the code generator uses the NVIDIA
compiler and libraries included with MATLAB. The CUDA toolkit installed with MATLAB includes
CUDA runtime, cuBLAS, cuFFT, cuSOLVER, cuDNN, and TensorRT libraries. To use CUDA MEX, you
must have a compatible C/C++ compiler, a CUDA enabled GPU device and a CUDA compatible
graphics driver.

For more information, see Installing Prerequisite Products.
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cuFFT Library Support: Improved performance of generated code for
fast Fourier transform (FFT) functions
Compared to previous releases, the code generated for FFT functions by using the cuFFT library calls
can have improved performance. In R2020b, the software caches multiple cuFFT plans that have the
same geometry. Because some cuFFT plans allocate memory on the GPU, caching can improve
memory utilization and improve performance for repeatedly running FFT calls.

Deep Learning Networks: Generate code for additional networks
Code generation by using the CUDA Deep Neural Network library (cuDNN) supports these additional
pretrained networks:

• efficientnetb0 – EfficientNet-b0 model network trained on the ImageNet data set.

Code generation by using the NVIDIA TensorRT Library supports these additional pretrained
networks:

• efficientnetb0 – EfficientNet-b0 model network trained on the ImageNet data set.

Code generation by using the ARM Compute Library supports these additional pretrained networks:

• efficientnetb0 – EfficientNet-b0 model network trained on the ImageNet data set.

For more information, see Supported Networks and Layers.

Deep Learning Layers: Generate code for additional layers
Code generation by using the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:

• focalLossLayer predicts object classes using focal loss.
• gruLayer creates a gated recurrent unit (GRU) that learns dependencies between time steps in

time series and sequence data.
• rcnnBoxRegressionLayer refines bounding box locations by using a smooth L1 loss function.
• rpnClassificationLayer for region proposal networks RPNs.
• scalingLayer for actor or critic network.
• sequenceFoldingLayer to convert a batch of image sequences to a batch of images.
• sequenceUnfoldingLayer to restore the sequence structure of the input data after sequence

folding.
• sigmoidLayer applies a sigmoid function to its input such that its output is bounded in the

interval (0,1).
• spaceToDepthLayer permutes the spatial blocks of the input into the depth dimension.
• softplusLayer for actor or critic network.

Code generation by using the NVIDIA TensorRT Library supports these additional layers:

• focalLossLayer predicts object classes using focal loss.
• gruLayer creates a gated recurrent unit (GRU) that learns dependencies between time steps in

time series and sequence data.
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• rcnnBoxRegressionLayer refines bounding box locations by using a smooth L1 loss function.
• rpnClassificationLayer for region proposal networks RPNs.
• scalingLayer for actor or critic network.
• sigmoidLayer applies a sigmoid function to its input such that its output is bounded in the

interval (0,1).
• spaceToDepthLayer permutes the spatial blocks of the input into the depth dimension.
• softplusLayer for actor or critic network.

Code generation for ARM Mali GPUs using the ARM Compute Library supports these additional
layers:

• focalLossLayer predicts object classes using focal loss.
• rcnnBoxRegressionLayer refines bounding box locations by using a smooth L1 loss function.
• rpnClassificationLayer for region proposal networks RPNs.
• scalingLayer for actor or critic network.
• sigmoidLayer applies a sigmoid function to its input such that its output is bounded in the

interval (0,1).
• spaceToDepthLayer permutes the spatial blocks of the input into the depth dimension.

For more information, see Supported Networks and Layers.

Code generation for additional Computer Vision Toolbox function
• pcsegdist

Code generation for additional Signal Processing Toolbox functions
• fsst
• ifsst
• filtfilt

New examples
This release adds the following examples:

• GPU Code Generation for Lane Detection in Simulink – This example shows how to generate
CUDA code for a Simulink model that can detect and output lane marker boundaries on an image.
This example takes RGB image as an input and uses the imresize, rgb2gray, ordfilt2, hough,
houghpeaks, and houghlines functions that are part of Image Processing Toolbox to detect lane
markings.

• GPU Code Generation for a Fog Rectification Simulink Model – Demonstrates how to generate
CUDA code from the Simulink model that takes a foggy image as input and produces a defogged
image as output. This example is a typical implementation of fog rectification algorithm. The
example uses conv2, rgb2gray, and imhist functions.

• Code Generation for a Deep Learning Simulink Model to Classify ECG Signals – Shows how you
can use powerful signal processing techniques and Convolutional Neural Networks together to
classify ECG signals in Simulink. This example also shows how to generate CUDA from the
Simulink model.
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• Code Generation for a Deep Learning Simulink Model that Performs Lane and Vehicle Detection –
Shows how to develop a CUDA application from a Simulink model that performs lane and vehicle
detection using convolutional neural networks (CNN). This example takes the frames of a traffic
video as an input, outputs two lane boundaries that correspond to the left and right lanes of the
ego vehicle, and detects vehicles in the frame.

• Code Generation for Lidar Point Cloud Segmentation Network – Shows how to generate CUDA
MEX for a lidar (light detection and ranging) semantic segmentation network that uses deep
learning. This example uses the SqueezeSegV2 network trained to segment organized lidar point
clouds belonging to three classes (background, car, and truck). The generated MEX takes a point
cloud input and performs prediction on the point cloud by using the DAGNetwork object for the
SqueezeSegV2 network.

• Code Generation for a Video Classification Network – Shows how to generate CUDA code for a
deep learning network that classifies video and deploy the generated code onto the NVIDIA Jetson
Xavier board using the GPU Coder Support Package for NVIDIA GPUs. The deep learning network
has both convolutional and bidirectional long short-term memory (BiLSTM) layers. The generated
application reads the data from a specified video file as a sequence of video frames and outputs a
label that classifies the activity in the video.

• Code Generation For Object Detection Using YOLO v3 Deep Learning – This example shows how
to generate CUDA® MEX for a you only look once (YOLO) v3 object detector with custom layers.
The example uses YOLO v3 object detection to illustrate:

• CUDA code generation for a deep learning network with custom layers.
• Convert a deep learning dlnetwork object into a DAGNetwork object for code generation.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.

Functionality being removed or changed
cnncodegen Function: ARM Mali targets support only
Behavior change in future release

In a future release, the cnncodegen function will generate C++ code and build a static library for
only the ARM Mali GPU processor. You can continue to use the 'arm-compute-mali' value for the
'targetlib' argument to target an ARM Mali GPU by using the ARM Compute Library for
computer vision and machine learning.

For all other targets, use the codegen command. To learn about targeting cuDNN targets by using
the codegen function, see Code Generation for Deep Learning Networks by Using cuDNN. To learn
about targeting TensorRT targets by using the codegen function, see Code Generation for Deep
Learning Networks by Using TensorRT.
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cuBLAS Support: Generate CUDA code for strided and batched matrix
multiply
In R2020a, you can generate CUDA code from MATLAB functions to compute many (small) matrix-
matrix multiplies at once. This technique is known as batched matrix-matrix multiply can potentially
improve device utilization and overall performance.

Use the gpucoder.batchedMatrixMultiply function to perform batched matrix multiply
operation of the form D = (alpha*A)xB.

Use the gpucoder.batchedMatrixMultiplyAdd function to perform batched matrix multiply with
add operation of the form D = (alpha*A)xB + (beta*C). For example,
[D1,D2] = gpucoder.batchedMatrixMultiplyAdd(A1,B1,C1,A2,B2,C2,...
'alpha',0.3,'beta', 0.4,'transpose','TT');

You can also perform strided matrix multiplication for matrix batches, where subsequent matrices are
memory-contiguous by using the gpucoder.stridedMatrixMultiply and
gpucoder.stridedMatrixMultiplyAdd functions. For example,

D = gpucoder.stridedMatrixMultiply(A,B,'alpha',0.4,'transpose','TT');

Single Shot Object Detection (SSD) Networks: Object detection on
NVIDIA GPU by using a single shot multibox detector
In R2020a, you can generate CUDA code for an SSD network (ssdObjectDetector object) and take
advantage of the NVIDIA cuDNN and TensorRT libraries.

The SSD detector uses a single stage object detection network that merges detections predicted from
multiscale features. The SSD is faster than two-stage detectors, such as the Faster R-CNN detector
and can localize objects more accurately compared to single-scale feature detectors such as the
YOLO v2 detector. For more information, see Getting Started with SSD Multibox Detection (Computer
Vision Toolbox).

For more information on the SSD layers supported in this release, see Supported Networks and
Layers. The Code Generation for Object Detection by Using Single Shot Multibox Detector shows how
to generate CUDA code for an SSD based vehicle object detector.

Row-Major Array Layout: Simplify interfacing generated deep learning
code with target libraries by storing arrays in row-major layout
The code that you generate can store array elements in column-major or row-major array layout. In
column-major array layout, the elements of the columns are contiguous in memory. In row-major, the
elements of the rows are contiguous. MATLAB uses column-major array layout by default, whereas
the deep learning networks supported by NVIDIA cuDNN, TensorRT, and ARM Compute libraries use
row-major layout by default.

In previous releases, the code generator produced CUDA C++ code that performed transpose
operations on the row-major data and called predict or activation on the transposed data. In R2020a,
you can choose to generate code that uses row-major array layout. Row-major layout can improve
performance for certain networks and ease integration with other code that also uses row-major
layout. For more information, see Array Layout (MATLAB Coder).
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For more information on deep learning code generation, see Deep Learning with GPU Coder.

Long Short-Term Memory (LSTM) Networks: Generate code for
bidirectional and stateful LSTM
In R2020a, you can generate CUDA code for bidirectional and stateful LSTM networks. A
bidirectional LSTM network is a type of recurrent neural network (RNN) that learns bidirectional
long-term dependencies between time steps of sequence data. Stateful LSTM networks can
remember the state of the network between predictions. The network state can be useful when you
do not have the complete time series in advance, or if you want to make multiple predictions on a
long time series. For more information, see Long Short-Term Memory Networks (Deep Learning
Toolbox).

For a code generation example using stateful LSTM, see Code Generation for a Sequence-to-
Sequence LSTM Network

For more information on the LSTM layers supported in this release, see Supported Networks and
Layers. Use the predictAndUpdateState to predict parts of a time series and update the network
state. Use the resetState to reset the network state between predictions.

Multi-Output Networks: Generate code for networks with multiple
outputs
In R2020a, you can generate code for networks with multiple output layers. For information on
training multiple output networks, see Multiple-Input and Multiple-Output Networks (Deep Learning
Toolbox).

Deep Learning Networks: Generate code for more networks
In R2020a, you can generate code for networks such as Darknet19, Darknet53, NASNet-Large,
NASNet-Mobile, and Inception-ResNet-v2. For more information, see Supported Networks and
Layers.

Generate code for half-precision floating point data type
In R2020a, you can generate CUDA code for half-precision floating point data types in MATLAB. Half-
precision data types occupy only 16 bits of memory, but their floating-point representation enables
them to handle wider dynamic ranges than integer or fixed-point data types of the same size.

For a full list of features that support half-precision code generation, see half. For examples that
demonstrate half-precision code generation, see Edge Detection with Sobel Method in Half-Precision,
Fog Rectification, and Stereo Disparity.

Deep Learning Layers: Generate code for more layers
Code generation with the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:

• anchorBoxLayer layer to store anchor boxes for object detection.
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• Bidirectional long short-term memory (BiLSTM) layer (bilstmLayer).
• concatenationLayer that concatenates inputs along a specified dimension.
• Flatten layer (flattenLayer).
• Global max pooling layer (globalMaxPooling2dLayer).
• ssdMergeLayer layer to merge activations from several feature maps.
• Word embedding layer for deep learning networks (wordEmbeddingLayer).
• Layer that implements ONNX identity operator (nnet.onnx.layer.IdentityLayer).

Code generation with the NVIDIA TensorRT Library supports these additional layers:

• anchorBoxLayer layer to store anchor boxes for object detection.
• Bidirectional long short-term memory (BiLSTM) layer (bilstmLayer).
• concatenationLayer that concatenates inputs along a specified dimension.
• Global max pooling layer (globalMaxPooling2dLayer).
• Long short-term memory (LSTM) layer (lstmLayer).
• Sequence input layer (sequenceInputLayer).
• ssdMergeLayer layer to merge activations from several feature maps.
• Word embedding layer for deep learning networks (wordEmbeddingLayer).
• Layer that implements ONNX identity operator (nnet.onnx.layer.IdentityLayer).

Code generation with the ARM Compute Library supports these additional layers:

• anchorBoxLayer layer to store anchor boxes for object detection.
• Layer that applies 2-D cropping to the input (crop2dLayer).
• Global max pooling layer (globalMaxPooling2dLayer).
• Affine layer for the ONNX network that performs element-wise scaling of the input followed by an

addition (nnet.onnx.layer.ElementwiseAffineLayer).
• Layer that implements ONNX identity operator (nnet.onnx.layer.IdentityLayer).

For more information, see Supported Networks and Layers.

Code generation for more MATLAB functions
• filter
• fftshift
• circshift

Code generation for more Image Processing Toolbox functions
• bwlookup
• imrotate
• imboxfilt
• imgaussfilt
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Code generation for more Computer Vision Toolbox functions
• disparitySGM
• pointCloud

Code generation for more Signal Processing Toolbox functions
• fftfilt
• stft
• istft

Code generation for Audio Toolbox functions
• mfcc

Deep Learning: Generate code that uses newer versions of ARM
Compute library
In R2020a, you can generate more efficient C++ code for layers and networks by using version 19.05
of the ARM Compute Library for computer vision and machine learning. To learn more about
supported compilers and libraries, see Code Generation for a Sequence-to-Sequence LSTM
NetworkInstalling Prerequisite Products. For an example on targeting the ARM Compute Library, see
Code Generation for Deep Learning Networks Targeting ARM Mali GPUs.

New and updated examples
This release adds the following examples:

• Code Generation for Object Detection by Using Single Shot Multibox Detector – Shows how to
generate CUDA code for an SSD network (ssdObjectDetector object) and take advantage of the
NVIDIA cuDNN libraries. An SSD network is based on a feed-forward convolutional neural
network that detect multiple objects within the image in a single shot. SSD network can be
thought of as having two sub-networks. A feature extraction network, followed by a detection
network..

• Edge Detection with Sobel Method in Half-Precision – Demonstrates edge detection in an image
with a MEX function generated from a MATLAB function. The edge detection algorithm is
implemented with half-precision data type.

This release updates the following examples:

• Code Generation for a Sequence-to-Sequence LSTM Network – demonstrates how to generate
CUDA code for a long short-term memory (LSTM) network. The example generates a MEX
application that makes predictions at each step of an input time series. Two methods are
demonstrated: a method using a standard LSTM network, and a method leveraging the stateful
behavior of the same LSTM network. This example uses accelerometer sensor data from a
smartphone carried on the body and makes predictions on the activity of the wearer. User
movements are classified into one of five categories, namely dancing, running, sitting, standing,
and walking.

• Fog Rectification – Shows the use of image processing functions for GPU code generation. This
example also shows half-precision code generation using GPU Coder.
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• Stereo Disparity – Shows how to generate a MEX function from a MATLAB function that computes
the stereo disparity of two images. This example also shows half-precision code generation using
GPU Coder.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.

Functionality being removed or changed
The coder.checkGpuInstallApp has been renamed to gpucoderSetup.

Compatibility Considerations
Functionality What Happens When

You Use This
Functionality?

Use This Instead Compatibility
Considerations

coder.checkGpuInst
allApp

Still runs Use gpucoderSetup Replace all instances of
coder.checkGpuInst
allApp with
gpucoderSetup.

R2020a

3-6

https://www.mathworks.com/help/releases/R2020a/gpucoder/examples/stereo-disparity.html
https://www.mathworks.com/help/releases/R2020a/gpucoder/ref/gpucodersetup-app.html


R2019b

Version: 1.4

New Features

Bug Fixes

Compatibility Considerations

4



Long Short-Term Memory (LSTM) Networks: Generate code for
recurrent networks such as LSTM
In R2019b, you can generate CUDA code for an LSTM network and take advantage of the NVIDIA
cuDNN library. An LSTM network is a type of recurrent neural network (RNN) that can learn long-
term dependencies between time steps of sequence data. For more information on the LSTM layers
supported in this release, see Supported Networks and Layers.

Deep Learning Targeting: Deploy deep learning networks to ARM Mali
GPU processors
You can generate code for prediction from a pretrained convolutional neural network (CNN) and
target the code to an embedded platform that uses an ARM Mali GPU processor. The code generator
takes advantage of ARM Compute Library for computer vision and machine learning. The generated
code implements a CNN that has the architecture, layers, and parameters specified in the input
SeriesNetwork or DAGNetwork objects. For more information, see Code Generation for Deep
Learning Networks Targeting ARM Mali GPUs.

For information on the networks and layers supported for code generation, see Supported Networks
and Layers.

TensorRT Support: Support for NVIDIA TensorRT library on the
Windows platform
In R2019b, you can take advantage of the NVIDIA low-latency, high-throughput TensorRT inference
library for your deep learning applications and generate CUDA code on the Windows® platform. For
information on the supported TensorRT version, see Installing Prerequisite Products. To set up your
development computer for code generation, see Setting Up the Prerequisite Products. To generate
CUDA code targeting the TensorRT libraries, see Code Generation for Deep Learning Networks by
Using TensorRT.

Deep Learning Networks: Generate code for more networks
In R2019b, you can generate code for networks such as DeepLab-v3+, MobileNet-v2, ONNX™ (Open
Neural Network Exchange), and Xception. For more information, see Supported Networks and
Layers.

Deep Learning Layers: Generate code for more layers
Code generation with the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:

• Pixel classification layer by using generalized dice loss for semantic segmentation
(dicePixelClassificationLayer)

• Exponential linear unit (ELU) layer (eluLayer)
• 2-D grouped convolutional layer (groupedConvolution2dLayer)
• Long short-term memory (LSTM) layer (lstmLayer)
• All output layers including custom classification or regression output layers created by using

nnet.layer.ClassificationLayer or nnet.layer.RegressionLayer
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• Sequence input layer (sequenceInputLayer)
• Hyperbolic tangent (tanh) layer (tanhLayer)
• Affine layer for the ONNX network that performs element-wise scaling of the input followed by an

addition (nnet.onnx.layer.ElementwiseAffineLayer)
• Flatten layer for the ONNX network that flattens the spatial dimensions of the input tensor to the

channel dimensions (nnet.onnx.layer.FlattenLayer)

Code generation with the NVIDIA TensorRT Library supports these additional layers:

• Clipped rectified linear unit (ReLU) layer (clippedReluLayer)
• Pixel classification layer using generalized dice loss for semantic segmentation

(dicePixelClassificationLayer)
• Exponential linear unit (ELU) layer (eluLayer)
• 2-D grouped convolutional layer (groupedConvolution2dLayer)
• All output layers including custom classification or regression output layers created by using

nnet.layer.ClassificationLayer or nnet.layer.RegressionLayer
• Hyperbolic tangent (tanh) layer (tanhLayer)
• Flatten layer for the ONNX network that flattens the spatial dimensions of the input tensor to the

channel dimensions (nnet.onnx.layer.FlattenLayer)

For more information, see Supported Networks and Layers.

1-D reduction operations on the GPU
In R2019b, you can use the gpucoder.reduce function to generate CUDA code that performs
efficient 1-D reduction operations on the GPU. The generated code uses the CUDA shuffle intrinsics to
implement the reduction operation.

For example, to find the sum and max elements of an array A:

function s = myReduce(A)
   s = gpucoder.reduce(A, {@mysum, @mymax}); 
end

function c = mysum(a, b)
   c = a+b;
end

function c = mymax(a, b)
   c = max(a,b);
end

For code generation, the gpucoder.reduce function has these requirements:

• The input must be of numeric or logical data type.
• The function passed through the @handle must be a binary function that accepts two inputs and

returns one output. The inputs and outputs must be of the same data type.
• The function must be commutative and associative.
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Workflow and generated code improvements
R2019b includes the following improvements in the generated code:

• Performance improvement in the code generated for the cumsum function.
• Variables and expression support for specifying dimensions in the kernel pragmas. For more

information, see coder.gpu.kernel.

Code generation for more Image Processing Toolbox functions
• bwconncomp
• bwlabel
• houghlines
• imadjust
• imhist
• imfill
• imreconstruct

Code generation for more MATLAB functions
• interp2
• min
• max
• rgb2gray

Code generation for more Computer Vision Toolbox functions
• selectStrongestBboxMulticlass

Functionality being removed or changed
This release removes support for generating CUDA code by using CUDA toolkit version 8.

Compatibility Considerations
GPU Coder throws an error if the supported CUDA toolkit is not found on the development platform.
For information on the supported compilers and libraries, see Installing Prerequisite Products.

New examples
This release adds the following examples:

• Code Generation for a Sequence-to-Sequence LSTM Network – Shows how to generate CUDA
code for a long short-term memory (LSTM) network. The example generates a MEX application
that makes predictions at each step of an input time series. This example uses accelerometer
sensor data from a smartphone carried on the body and makes predictions on the activity of the
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wearer. User movements are classified into one of five categories, namely dancing, running,
sitting, standing, and walking.

• Deep Learning Prediction on ARM Mali GPU– Shows how to use the cnncodegen function to
generate code for an image classification application that uses deep learning on ARM Mali GPUs.
The example uses the MobileNet-v2 DAG network to perform image classification.

• QR Decomposition on an NVIDIA GPU Using cuSOLVER Libraries– Shows how to create a
standalone CUDA executable that leverages the CUDA Solver library (cuSOLVER). The example
uses a curve fitting application that mimics automatic lane tracking on a road to illustrate several
topics, including:

• Fitting an arbitrary-order polynomial to noisy data using matrix QR factorization.
• Using the coder.LAPACKCallback class to provide the LAPACK library information for the

code generator when generating standalone executables.
• Lane Detection on the GPU using houghlines– Shows how to generate CUDA MEX for a

MATLAB function that can detect and output lane marker boundaries on an image. The example
takes an RGB image as input and uses the rgb2gray, ordfilt2, hough, houghpeaks, and
houghlines functions that are part of Image Processing Toolbox™ to produce the lane detected
output image.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.
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Deep Learning: Generate code for more layers
Code generation with the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:

• Layer that applies 2-D cropping to the input (crop2dLayer)
• One of the layers that allows the network to use features from earlier by making the features

match the feature map size at the later layer (YOLOv2ReorgLayer)
• Output layer for YOLO v2 object detection network (YOLOv2OutputLayer).
• Transform layer for YOLO v2 object detection network (YOLOv2TransformLayer).
• Flatten activations into 1-D assuming C-style (row-major) order

(nnet.keras.layer.FlattenCStyleLayer)
• Global average pooling layer for spatial data

(nnet.keras.layer.GlobalAveragePooling2dLayer)
• Sigmoid activation layer (nnet.keras.layer.SigmoidLayer)
• Hyperbolic tangent activation layer (nnet.keras.layer.TanhLayer)
• Zero padding layer for 2-D input (nnet.keras.layer.ZeroPadding2dLayer)

Code generation with the NVIDIA TensorRT Library supports these additional layers:

• Layer that applies 2-D cropping to the input (crop2dLayer)
• Depth concatenation layer (depthConcatenationLayer)
• One of the layers that allows the network to use features from earlier by making the features

match the feature map size at the later layer (YOLOv2ReorgLayer)
• Output layer for YOLO v2 object detection network (YOLOv2OutputLayer).
• Transform layer for YOLO v2 object detection network (YOLOv2TransformLayer).
• Flatten activations into 1-D assuming C-style (row-major) order

(nnet.keras.layer.FlattenCStyleLayer)
• Global average pooling layer for spatial data

(nnet.keras.layer.GlobalAveragePooling2dLayer)
• Sigmoid activation layer (nnet.keras.layer.SigmoidLayer)
• Hyperbolic tangent activation layer (nnet.keras.layer.TanhLayer)
• Zero padding layer for 2-D input (nnet.keras.layer.ZeroPadding2dLayer)

For more information on supported networks and layers, see Supported Networks and Layers.

TensorRT Support: Generate code that takes advantage of FP16
optimization in deep learning inference applications
Using TensorRT half-precision (also called FP16) arithmetic support in GPU Coder, the generated
neural network code utilizes reduced memory usage compared to FP32 precision. This enables
deployment of larger networks while taking less time than FP32. To enable half-precision, set the
DataType property of the coder.TensorRTConfig object to 'fp16'. Alternatively, you can also set
the DataType property in the Deep Learning settings tab of the GPU Coder App.
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Deep Learning: Generate code for more networks
In R2019a, you can generate code for networks such as fully convolutional neural networks (FCN),
YOLOv2, and segmentation networks such as U-Net. For more information, see Deep Learning with
GPU Coder.

CUDA optimized transpose function
In this release, you can use the gpucoder.transpose or gpucoder.ctranspose functions to
perform efficient out-of-place non-conjugate or conjugate transpose on the GPU. This implementation
uses shared memory for improved performance. For example,

A = rand(5,10);
B = gpucoder.transpose(A);

This function must not be used for inputs whose dimensions are greater than 2.

Support for unbounded variables
In this release, GPU Coder supports CUDA code generation for MATLAB code that contains
unbounded variables.

Workflow and generated code quality improvements
R2019a includes these workflow and generated code quality improvements:

• Verify and set up the GPU code generation environment by using the
coder.checkGpuInstallApp. The Check GPU Install app is an interactive tool to verify and
set up the GPU code generation environment on your development computer and hardware
platforms such as the NVIDIA DRIVE and Jetson. For more information, see Using the Check GPU
Install App.

You can also use the coder.checkGpuInstall function to perform the same checks from the
MATLAB command line. In this release, the coder.checkGpuInstall function has been updated
to accept a coder.gpuEnvConfig object. The coder.gpuEnvConfig object contains the
configuration parameters that coder.checkGpuInstall uses to verify the GPU code generation
environment. You can continue to use option flags with the coder.checkGpuInstall as in
previous releases, but it is recommended to use the coder.gpuEnvConfig object as this
functionality may be deprecated in a future release.

• Improved handling for loops with dynamic bound variables.
• CUDA profiling integration with the SIL interface.
• Support for the gpuArray function when performing SIL simulation.

Code generation for more MATLAB functions
• conv
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Code generation for more Image Processing Toolbox functions
• hough
• houghpeaks
• ordfilt2

Code generation for more Computer Vision Toolbox functions
• rectifyStereoImages

Code generation for Statistics and Machine Learning Toolbox
functions
In R2019a, you can generate optimized CUDA code for pdist and pdist2 functions from the
Statistics and Machine Learning Toolbox™. The supported distance input argument values are
'euclidean', 'squareeuclidean', 'seuclidean', 'cityblock', 'minkowski',
'chebychev', 'cosine', 'correlation', 'hamming', and 'jaccard'.

Code generation for Wavelet Toolbox function
In R2019a, you can generate optimized CUDA code for the cwt Wavelet Toolbox function. For more
information, see Supported Functions.

New examples
This release adds the following examples:

• Train and Deploy Fully Convolutional Networks for Semantic Segmentation – Shows how to train
and deploy a fully convolutional semantic segmentation network on an NVIDIA GPU by using GPU
Coder.

• Code Generation for Semantic Segmentation Network using U-net – Demonstrates code
generation for an image segmentation application that uses U-Net, a popular deep learning
network for image segmentation.

• Code Generation for Object Detection Using YOLO v2 – Demonstrates code generation for an
object detector using a deep learning technique named you only look once (YOLO) v2.

• Top-Hat Filtering on Jetson TX2– Demonstrates code generation for a top-hat filtering application
that removes uneven background illumination on NVIDIA Jetson TX2. This example requires the
GPU Coder Support Package for NVIDIA GPUs.

• Deployment and Classification of Webcam Images on NVIDIA Jetson TX2 Platform– Demonstrates
deployment and classification of webcam Images on NVIDIA Jetson TX2 Platform. This example
requires the GPU Coder Support Package for NVIDIA GPUs.

• Edge Detection on GPU using Order statistic filters– Demonstrates code generation for edge
detection algorithm on the GPU using order statistic filters.

• Image Denoising on the GPU using Median filter– Demonstrates code generation for an image
denoising application on the GPU using median filter.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.
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Deep Learning Retargetability: Deploy applications that use deep
learning networks onto Intel MKL-DNN, and NVIDIA TensorRT by using
the codegen function
When targeting Intel® MKL-DNN, and NVIDIA TensorRT libraries, GPU Coder now supports code
generation for deep learning networks by using the codegen function. In previous releases, you
could use the codegen function to target only NVIDIA cuDNN libraries.

To use the codegen function, create a GPU configuration object and set the
DeepLearningConfig.TargetLib property to 'cudnn', 'mkldnn', or 'tensorrt'. For more
information, see Code Generation for Deep Learning Networks with TensorRT and Code Generation
for Deep Learning Networks with MKL-DNN (MATLAB Coder).

Compatibility Considerations
In R2018b, you must install the MATLAB Coder Interface for Deep Learning Libraries and GPU Coder
Interface for Deep Learning Libraries to generate code for deep learning networks.

In previous releases, you could target NVIDIA cuDNN libraries without specifying a target library in
the code configuration object. In R2018b, you must set the cfg.DeepLearningConfig =
coder.DeepLearningConfig('cudnn') configuration object to target cuDNN libraries.

Thrust Library Support: Generate GPU-accelerated code for sort and
reduction operations by using the Thrust library
With Thrust library support in GPU Coder, you can take advantage of GPU-accelerated primitives
such as sort to implement complex high-performance parallel applications. When your MATLAB code
uses gpucoder.sort function instead of sort, GPU Coder can generate calls to the Thrust sort
primitives. For more information, see Thrust Example.

Deep Learning Optimization: Improve performance and memory
utilization through auto-tuning, layer fusion, and buffer minimization
When generating code for deep learning networks by using the cuDNN libraries, you can now take
advantage of the auto-tuning functionality in the library to select an optimal convolutional algorithm.
The convolutional algorithm selection is based on the input, kernel sizes, and memory availability
resulting in improved performance. To control the auto-tuning functionality, use the
DeepLearningConfig.AutoTuning property of the GPU code configuration object. This capability
is available only when targeting cuDNN libraries and is enabled by default. For more information, see
coder.CuDNNConfig.

In R2018b, the code generator uses layer fusion and double buffering techniques to generate
optimized code for deep learning networks.

• Convolutional and Rectified Linear Unit (ReLU) layers are fused into FusedConvRelu layer.
• Convolutional and Batch normalization layers are also fused to a convolutional layer with
modified weights and biases.

• Convolutional, Batch normalization layer, and Rectified Linear Unit (ReLU) layers are also fused as
FusedConvRelu layer.
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gpuArray Support: Use gpuArray arguments at the I/O of MEX targets
In R2018b, you can use gpuArray arguments as inputs and outputs to an entry-point function when
generating CUDA MEX code. Because the gpuArray function copies the array to the GPU, the
generated code contains fewer cudaMemcpy calls. To use this functionality, use coder.Type to
represent the gpuArray type of an entry-point function input. For example, you can use
coder.typeof(rand(20),'Gpu',true) or coder.typeof(gpuArray(rand(20))) to create a
gpuArray type for code generation.

Support Package for NVIDIA GPUs: Target NVIDIA Jetson and DRIVE
platforms
In R2018b, you can use the GPU Coder Support Package for NVIDIA GPUs to communicate with,
deploy, and run CUDA code on NVIDIA platforms such as Jetson and DRIVE. To download the support
package, use the Add-on Explorer. For more information on the supported workflows, see GPU Coder
Support Package for NVIDIA GPUs.

Calling External CUDA Functions: Use GPU arguments that pass by
reference when using coder.ceval
In R2018b, you can pass GPU arguments by reference when calling external CUDA functions with
coder.ceval. To make coder.ceval pass arguments by reference, use the constructs coder.ref,
coder.rref, and coder.wref.

Deep Learning Layers: Generate code for new network layers
In R2018b, you can now generate code for these layers:

• Dilated convolutional
• Variable-size I/O

Ease-of-use and traceability improvements
This release contains a new traceability report that highlights sections of MATLAB code that are
running on the GPU, a new diagnosis report to analyze performance breakdown, and an integrated
GPU profiling report to analyze execution profiles of the generated code.

You can use the traceability feature to understand how the code generator maps your algorithm to
GPU kernels, debug issues in the generated code, and evaluate the quality of the generated code. For
more information on using the traceability feature, see Trace Between MATLAB Code and Generated
CUDA Code.

In R2018b, the code generation report has a new diagnostic section that analyzes performance issues
with your MATLAB algorithm and categorizes them as kernel issues, memory issues, pragma issues,
and design pattern issues. The report provides suggestions for resolving the issues so that you can
generate more efficient CUDA code. To enable report generation, set the GenerateReport property
in the code configuration object or enable the Always create a code generation report option in
Miore Settings ->Debugging pane of the GPU Coder app.

For information on the GPU profiling report, see Analyze Execution Profiles of the Generated Code.
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In R2018b, CUDA syntax highlighting in the MATLAB editor helps you identify the different CUDA
language elements in the generated code. You can change syntax highlighting preferences. On the
Home tab, in the Environment section, click Preferences. Select MATLAB > Editor/Debugger >
Language > CUDA.

Code generation for more Image Processing Toolbox functions
In R2018b, you can generate optimized CUDA code for the imresize Image Processing Toolbox
function. For more information, see Supported Functions.

Deep learning examples
This release adds two deep learning examples:

• Integrating Deep Learning with GPU Coder into Simulink – Demonstrates integration of the CUDA
code generated for a deep learning network into the Simulink environment.

• Code Generation for Denoising Deep Neural Network – Shows how to generate CUDA code for a
denoising convolutional neural network (DnCNN). You can use the denoising network to estimate
noise in a noisy image, and then remove it to obtain a denoised image.

• Deep Learning Prediction with NVIDIA TensorRT – Shows how to generate CUDA code by using
the TensorRT library.

• Deep Learning Prediction with Different Batch Sizes – Shows how to use different batch sizes
when generating code for a deep learning network.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter
gpucoderexamples.

Functionality being removed or changed

Compatibility Considerations
• Specifying the C language for the generated code through the TargetLang property of

coder.config will be removed in a future release.

Functionality What Happens When You Use
This Functionality?

Use This Instead

TargetLang = 'C' property of
coder.config object.

You get a warning message. TargetLang = 'C++' property of
coder.config object.

• To perform code generation for deep learning networks, you must install the GPU Coder
Interface for Deep Learning Libraries and MATLAB Coder Interface for Deep
Learning Libraries support packages. To install these support packages, select the support
package from the MATLAB Add-Ons menu.

Functionality What Happens When You Use
This Functionality?

Solution

Using cnncodegen or codegen
functions to generate code for
deep learning networks.

You get an error message. To install the required support
packages, follow the links in the
error message.
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Directed Acyclic Graph (DAG) Networks: Generate CUDA code for deep
learning networks with DAG topology
You can use GPU Coder in tandem with the Neural Network Toolbox™ to generate CUDA code for
DAG networks. A DAG network is a neural network for deep learning that can have its layers
arranged as a directed acyclic graph. You can use a pretrained DAG network or train one by using the
Neural Network Toolbox. See, Supported Networks and Layers.

Deep Learning Layers: Generate CUDA code for popular networks such
as GoogLeNet, ResNet, and SegNet
In R2018a, you can target generate CUDA code for popular convolutional neural networks such as
GoogLeNet, ResNet, and SegNet. See, Supported Networks and Layers

TensorRT Support: Generate code that takes advantage of NVIDIA
deep learning inference optimizer and run time
With TensorRT support in GPU Coder, you can take advantage of the NVIDIA low-latency, high
throughput inference library for your deep learning applications on embedded platforms. For more
information, see CNN Code Generation, and cnncodegen.

Multi-Platform Deep Learning Targeting: Deploy deep learning
networks to Intel and ARM processors
Generate code that takes advantage of Intel Math Kernel Library for Deep Neural Networks (MKL-
DNN) for Intel CPUs, and ARM Compute libraries for mobile platforms. For more information, see
CNN Code Generation.

Code generation for Image Processing Toolbox functions
In R2018a, you can generate optimized code for Image Processing Toolbox functions such as
imerode, imdilate, and imwarp. For more information, see Supported Functions.

Code generation for Computer Vision System Toolbox functions
Generate optimized CUDA code for the matchfeatures function. For more information, see
Supported Functions.

Loop and kernel optimization
In R2018a, you can map while loops and dynamically bound for-loops to GPU kernels. This feature
allows you to generate CUDA code containing kernels with variable and symbolic dimensions.

Deep learning examples
This release adds three deep learning examples:

• Pedestrian Detection – Demonstrates code generation for a pedestrian detection implementation
that has several applications in the fields of autonomous driving, surveillance, and robotics.
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• Traffic Sign Detection and Recognition – Demonstrates how to generate CUDA MEX code to detect
traffic signs, suppress overlapping detections, and classify the detected traffic signs.

• Logo Recognition Network – Demonstrates code generation for a logo classification application
that can recognize 32 logos under various lightning conditions and camera motions.

Use gpucoderexamples to see the full list of examples that ship with GPU Coder.
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CUDA C and C++ code Generation
Generate CUDA C and C++ code from MATLAB code. You can integrate the generated code into your
project as source code, static libraries, or dynamic libraries. The generated code calls optimized
NVIDIA CUDA libraries, including cuDNN, cuSolver, cuFFT, and cuBLAS. To generate CUDA code,
you must have the following products:

• MATLAB
• GPU Coder
• MATLAB Coder
• Parallel Computing Toolbox™

For more information, see Getting Started with GPU Coder.

Deep Learning Network Support
You can use GPU Coder in tandem with the Neural Network Toolbox to generate CUDA code for deep
learning networks. You can use the Neural Network Toolbox to create and train a neural network, or
import pretrained networks like VGG, MNIST, AlexNET, YOLO. See, Deep Learning.

Image Processing Toolbox Support
GPU Coder supports CUDA code generation for many of the functions from MATLAB and the Image
Processing Toolbox.

CUDA Kernel and memory Optimizations
GPU Coder performs program parallelism analysis to identify segments of code that run on the CPU
and segments that run on the GPU. After this kernel partitioning and optimization is complete, GPU
Coder performs memory optimization by analyzing the data dependency between the CPU and GPU
partitions. GPU Coder also provides you pragmas and design patterns that can be used to generate
optimized CUDA code.

MEX Function Generation for code Verification and Acceleration
With GPU Coder, you can also use the generated code within the MATLAB environment to accelerate
computationally intensive portions of your MATLAB code. MEX functionality also allows you to verify
the numerical correctness of the generated code.

Legacy CUDA code Integration
If you have highly optimized CUDA code for certain subfunctions that you want to incorporate into
your generated code, GPU Coder extends the coder.ceval functionality to help you achieve this
goal.
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Hardware Integration with NVIDIA Tegra
You can use GPU Coder to generate CUDA code for targeting embedded GPU platforms. Specifically,
you can target the NVIDIA Tegra® development boards Jetson TK1, TX1, and TX2 on either Windows
or Linux® systems.

Code Profiling and Verification
By using GPU Coder with Embedded Coder®, you can verify the numerical behavior of the generated
C/C++ code by using software-in-the-loop (SIL) execution.
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